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embedded language, but the proof of properties for a particular application usu-ally requires a painful codi�cation. In the shallow approach, there is a syntactictranslation of the objects of the source language into semantically equivalentobjects in the target language. In this case, meta-theoretical properties cannotbe stated, but codi�cation of particular applications is simpler.Our approach is halfway between a deep and a shallow embedding. It for-malizes the generalized substitution mechanism of the B-method inside the logicof Coq and PVS, and thus we can reason about the method in a certain meta-level. Moreover, we provide a compact encoding highly integrated with the logicof Coq and PVS. For instance, some logical elements of the B-method are liftedto the dependent type theory of Coq and PVS. In the case of PVS, we havemechanized our embedding in a way that the Abstract Machine Notation canbe used as a layer over the PVS speci�cation language.This paper is organized as follows. In Section 2, we introduce the B-method.In Section 3, we present our formalization in Coq and PVS. In Section 4, wedescribe the architecture of the software component that implements our em-bedding, and we present two case studies. Related work and future research arediscussed in Section 5.2 An Overview of BB is a state-oriented method which covers the complete life cycle of softwaredevelopment. It provides a uniform language, the Abstract Machine Notation,to specify, design, and implement systems. A usual development in B consists ofan abstract speci�cation, followed by some re�nement steps. The �nal re�nementcorresponds to an implementation. The soundness of the construction is enforcedby obligation proofs at each step of the development.A speci�cation in B is composed of a set of modules called (abstract) ma-chines. Each machine has an internal state, and provides services allowing anexternal user to access or modify its state. Syntactically, a machine consists ofseveral clauses which determine the static and dynamic properties of the state.Consider the abstract machine simple of Figure 1, which speci�es a simplesystem that stores a value and provides services to read and overwrite this value.The machine simple, rather than specifying a system, speci�es a family ofsystems having the same abstract properties with respect to the parameter T.In B, a parameter can be a scalar or nonempty abstract set. By convention,a parameter starting with an uppercase letter is an abstract set. The clauseVARIABLES de�nes the state of the machine. In this case, we use only a variablevalue. The clause INVARIANT constrains the domain of that variable. It statesthat value is a member of T. Note that at this stage of the development thedomain of the stored value is abstract. We just assume that it is nonemptyand �nite. The initial state of the machine, which must satisfy the invariant,is speci�ed in the initialization clause. In this example, the variable value isinitialized with any element of T.The services provided by the machine are speci�ed in the clause OPERA-TIONS. In this case, we specify one operation to overwrite the value | write2



MACHINE simple(T)VARIABLESvalueINVARIANTvalue : TINITIALIZATIONANY x WHERE x:T THENvalue := xEND;OPERATIONSwrite(v) ,PRE v:T THENvalue := vEND;v  � read ,v := valueEND Fig. 1. Abstract Machine simple| and another to access it | read. To specify operations, B uses a mechanismof generalized substitutions. B de�nes six basic generalized substitutions: thewell-known skip, multi-assignment, selection, bounded choice and unboundedchoice, and the preconditioned substitution. A generalized substitution acts asa predicate transformer. For example, the generalized substitutionPRE v:T THENvalue := vEND;corresponds to the predicate transformer[v 2 T j value:=v]which is de�ned for any predicate P as follows:[v 2 T j value:=v]P , v 2 T ^ [value := v]PIn Section 3, we give a more formal presentation to this notion.Some other clauses allow the introduction of constants (CONSTANTS) and dif-ferent kinds of assumptions (CONSTRAINTS). Large software development is sup-ported by several composition mechanisms, for instance, INCLUDES, SEES, andIMPORTS. These mechanisms give di�erent access privileges to the operations orto the local variables of an external machine.3



An abstract speci�cation can be materialized in an implementation by amechanism of re�nement. Assume for example that in a real implementation ofour system, a value can be stored in a machine register or in memory.The re�nement simple_ref of Figure 2 uses two variables to store the value,one for the memory, val_mem, and the other for the register, val_reg. Thevariable flag states which of them is used. The invariant of a re�nement relatesthe abstract variables to the concrete ones. From a user's point of view, theservices provided by simple and simple_ref are equivalent.REFINEMENT simple_ref(T)REFINES simpleVARIABLESval_mem, val_reg, flagINVARIANTflag:bool ^ val_mem:T ^ val_reg:T ^(flag ^ val_mem = value) _ (: flag ^ val_reg = value)INITIALIZATIONANY x,f WHERE x:T ^ f:bool THENflag,val_mem,val_reg := f,x,xEND;OPERATIONSwrite(v) ,PRE v:T THENCHOICEflag,val_mem := true,vORflag,val_reg := false,vENDEND;v  � read ,IF flag THEN v := val_memELSE v := val_regENDEND Fig. 2. A Re�nement of the Abstract Machine simpleThe soundness of a machine in B is given by proof obligations which verifythat{ There exists an instantiation for the parameters, sets, and constants satisfy-ing the machine constraints. 4



{ The initial state satis�es the invariant.{ The invariant is preserved by the operations.Validity of composition and re�nement is also guaranteed by proof obliga-tions.3 Formalization of the B Semantics in Coq and PVSCoq [BBC+97] is a proof assistant developed by the Coq Project at INRIA(Rocquencourt). The speci�cation language of Coq is based on an intuitionis-tic higher-order logic called Calculus of Inductive Constructions [Wer94]. PVS[ORS92] is a general veri�cation system developed by the Formal Methods groupat SRI International. Both Coq and PVS are enhanced with a dependent typetheory. However, in contrast to Coq, the type theory of PVS does not supportan e�ective method of type checking. Hence, the type checker of PVS gener-ates Type Correctness Conditions (TCCs) that must be discharged by the user.Speci�cations in Coq and PVS are structured in modules | sections in Coq andtheories in PVS | which package mathematical and logical objects.In the following, we give the encoding of most of the B constructs in eitherCoq or PVS. We give them in both only when they are quite di�erent; otherwise,since the PVS syntax is closer to B, we give the PVS encoding.3.1 Basic notationThe B-method has departed from the before-after relation introduced by thegeneralized substitution mechanism. While the usual binary relation for model-ing nondeterministic commands does not distinguish between non terminationand halting, the preconditioned substitution speci�es terminating points. Fur-thermore, a computation starting from a state not satisfying the preconditionpredicate leads anywhere. Consequently, the basic computational model of B, asubstitution, can be represented by a dependent record consisting of a predicatepre and a binary relation rel such that18e1 : :pre(S)(e1)) 8e2 : rel(S)(e1; e2) (1)The substitution S can also be characterized by a predicate transformer [S]linked to pre and rel by the following equations:[S](p) = � e1: pre(S)(e1) ^ 8e2: rel(S)(e1,e2) ) p(e2)pre(S) = [S](TRUE)rel(S) = � e1,e2: : ([S](� e: e 6= e2))(e1)1 We lift the usual boolean operators to predicates.5



However, it should be noted that not all predicate transformers can be as-sociated to substitutions, a su�cient condition being its monotonicity. In thefollowing, we represent a substitution with pre and rel since they are moreintuitive for the de�nition of new substitutions.Formally, a substitution is modeled by a transition between state environ-ments, that is a record containing the �elds pre and rel, and the proof thatthey satisfy Equation 1. In Coq, we use a dependent record, and in PVS, we usethe subtype as a predicate feature.Substitutions in CoqDefinition Is_Transition:(Pred Env) -> (Env -> Env -> Prop) -> Prop :=[g:(Pred Env)][tr:Env -> Env -> Prop](e1,e2:Env) (~(g e1) -> (tr e1 e2)).Record Transition: Type := mk_Transition fpre: (Pred Env);rel: Env -> Env -> Prop;obl: (Is_Transition pre rel)g.Substitutions in PVSTransition_0: TYPE = [#pre: pred[Env],rel: [Env,Env -> bool]#]Is_Transition: [Transition_0->bool] =(� (tr:Transition_0):(8 ((e1,e2: Env) (: pre(tr)(e1)) ) rel(tr)(e1,e2))))Transition: TYPE = (Is_Transition)3.2 Machine statesMost of the substitutions are independent of the representation of the state space.However, some of the substitutions require knowing that the environment is a setof typed variables (for instance, in the case of the parallel substitution [Section4.2]). With regard to the typing system underlying Coq, such an environment iseasily encoded [Hey97] through a function mapping each variable to its type. InPVS, the encoding is not as straightforward as in Coq, since in PVS, types arenot terms. 6



Machine states in Coq In Coq, the de�nition of an environment Env param-eterized by a set of variables Id and a mapping function typeof is declared asfollows:Section modele.Variable Id: Set.Variable typeof: Id->Set.Definition Env := (i:Id)(typeof i)....End modele.For instance, let us consider the state consisting of x:nat; b:bool. To in-stantiate the de�nitions introduced in the modele section, we introduce the fol-lowing declarations:Inductive Id: Set := x: Id | b: Id.Definition typeof: Id->Set :=[i:Id] Cases i of x => nat | b => bool end.It should be noted that such a de�nition is valid in Coq since types are termsand, consequently, we can elaborate type expressions.Machine states in PVS As types are not terms, we cannot use a similarencoding of typeof as in Coq. However, we can use the notion of subtype aspredicate introduced by PVS. Thus, for each machine we synthesize a new super-type from which the types of the machine variables will be derived as subtypes.In PVS, the module de�ning the type Env is declared as follows, where Valrepresents the type union of the state variables, and typeof is a function fromvariables to subsets of Val:modele [Id,Val: TYPE, typeof: [Id -> pred[Val]]]:THEORYBEGINEnv : TYPE = [ i:Id -> (typeof(i))]...END modeleFor instance, if we consider the state x:nat; b:bool, Val is encoded as a data-type with a variant for each variable of the state. Each variant declares a con-structor (d x, d b), a destructor (v x,v b), and an observer (d x?, d b?):Id: TYPE = fx,bgVal: DATATYPEBEGINd_x(v_x:nat):d_x?d_b(v_b:bool):d_b? 7



END Valtypeof(i:Id) : pred[Val] = IF i = id_x THEN d_x? ELSE d_b? ENDIFThe use of such a state encoding is rather clumsy since we must manipulateconstructors and destructors of the union type Val. Thus, at the user level, wealso introduce a record encoding the state2 and conversions between the tworepresentations.With respect to our previous experience in encoding machine states in higher-order logics, it appears that dependent types are necessary; otherwise, either thestate space is untyped [vW90] or we must resort to complicated encoding [BF95].3.3 The basic substitutionThe basic substitution, which is in fact a multi-assignment, is de�ned from afunction between environments as follows:COM_PT(f:[Env->Env]): Transition =(# pre := TRUE, rel := � (e1,e2: Env): e2 = f(e1) #)The de�nition in Coq is similar. However, the fact that the transition veri�esEquation 1 must be proved before the de�nition of the record. In PVS, thiscondition is generated by the type checker when the record is declared.3.4 Generalized substitutionsAs we have said, the six basic generalized substitutions of B can be de�ned by thepredicates pre and rel. For instance, we have for the preconditioned substitutionnoted P j S where P is a precondition predicate and S a substitution:pre(P jS) = P ^ pre(S)rel(P jS) = � e1,e2: P(e1) ) rel(S)(e1,e2)We prove that[P jS] = � p: P ^ [S](p)In the case of the parallel substitution, B proposes [Abr96b] a kB constructwhose purpose is mainly to act as a structuring tool. We have introduced thisoperator by the following PVS de�nition:PAR(trl: Transition[Envl],trr: Transition[Envr]):Transition [[Envl,Envr],[Envl,Envr]] =(# pre := (� (el:Envl,er:Envr): pre(trl)(el) ^ pre(trr)(er)),rel := (� (elr1:[Envl,Envr],elr2:[Envl,Envr]):(pre(trl)(PROJ_1(elr1)) ^ pre(trr)(PROJ_2(elr1)))2 Such a record encoding cannot be stated at the meta level.8



)(rel(trl)(PROJ_1(elr1),PROJ_1(elr2)) ^rel(trr)(PROJ_2(elr1),PROJ_2(elr2))))#)where PROJ 1(e1,e2) = e1, and PROJ 2(e1,e2) = e2.An interesting property of this parallel construct is its behavior with respectto the sequence (F1 k G1); (F2 k G2) = (F1;F2) k (G1;G2)The intuitive reason of the validity of such a property is that the Fi substi-tutions and the substitutions Fi and Gi are built on disjoint state spaces. Thus,they do not interfere.3.5 InvariantsMachine invariants are introduced as a constraint predicate Inv over the statespace. In PVS, such a constraint is expressed using the subtype as a predicatefacility of its underlying type theory:Typed_Env: TYPE = (Inv)In Coq, we use a dependent type to introduce the proof of the constraintover the state space.3Record Typed_Env: Set := fenv:> Env;ctr: (Inv env); (* proof of the constraint *)g.We note again the di�erent approaches of Coq and PVS with respect to theintroduction of such constraints in a dependent product.{ The type-as-predicate facility of PVS leads to undecidability and, conse-quently, the PVS type checker produces proof obligations to check subtyping.While it is up to the user to discharge such obligations, it should be notedthat the powerful decision procedures of PVS are usually quite su�cient.{ In Coq, the proof (ctr) that the state space veri�es the constraint Inv mustbe provided before the construction of the \typed" state space. However, theRefine facility of Coq can be used to postpone this proof.Now, in PVS, we de�ne the predicate Is Tr Inv typing invariant preservingtransitions as follows:Is_Tr_Inv: [Transition -> bool] =� (tr: Transition):8 (e1: Typed_Env, e2: Env):(pre(tr)(e1) ^ rel(tr)(e1, e2)) ) Inv(e2)3 The notation :> also introduces an implicit conversion from Typed Env to Env.9



3.6 Re�nementsIntuitively, a machineM1 is re�ned by a machineM2 if the latter can replace theformer with respect to a machine user. In the context of the B method, machinere�nement is de�ned in terms of substitution re�nement as follows:{ Machines M1 and M2 have the same signature (set of operations).{ There is a re�nement relation between the respective implementations byM1 and M2 of any external substitution (in fact, a program) built fromtheir common signature.In B, the re�nement between two substitutions is de�ned as an implicationbetween the corresponding predicate transformers.IS_REFINED_BY (tr1, tr2: Transition): bool =8 (p: pred[Env]): |- ( [|tr1|](p) ) [|tr2|](p) )It should be noted that the basic property that bridges the gap between ma-chine re�nement and substitution re�nement is the monotonicity of each basicsubstitution with respect to the re�nement. Since a program is a compositionthrough basic substitutions of the operations of the common signature, the re-�nement between the respective implementations of the operations is a su�cientcondition. Consequently, when introducing a new operator, we must check themonotonicity property. In Section 4.2, we show that the new k operator is actu-ally monotone.We have proved in PVS and Coq the monotonicity of the operators withrespect to re�nement. For instance, the monotonicity of the preconditioningoperator is expressed in PVS asMONOTONE_PRE: THEOREM8 (p:pred[Env],tr1,tr2:Transition):IS_REFINED BY(tr1,tr2) )IS_REFINED_BY(PRE(p,tr1),PRE(p,tr2))3.7 SummaryTable 1 summarizes the key aspects of the encoding of B in Coq and PVS.This study has led us to the following conclusions:{ Dependent types and subtyping allow a simple encoding of abstract ma-chines. Coq lacks the subtyping mechanism, but its dependent type theoryis more powerful than the PVS one, notably with respect to type construc-tors.{ PVS type obligations match the concept of B proof obligations. In Coq,theorems must be stated explicitly. However, the use of the Refine tacticcould help.{ A more technical aspect concerns data structure updates with copy. Forthis purpose, PVS proposes the WITH construct, which allows the copy ofstructures, except the speci�ed substructures for which a new value is given.Coq lacks such a construct. However, grammar extension features of Coqshould allow the de�nition of the construct.10



Table 1. Encoding of B in Coq and PVSB features Coq PVSmachine section theorystate functional dependent type functional dependent type+abstract data typesubstitution constrained record fpre,relginvariant constrained states and substitutionsre�nement relation between transitionsproof obligation stated theorem type correctness condition4 Case StudiesTo e�ectively exploit the formalization, we have extended the front-end toolPBS [Mu~n98] to support our embedding. The PBS system allows the use of theAbstract Machine Notation inside PVS. Moreover, we have written some tacticsin the PVS theorem prover in order to deal with the proof obligations generatedby the method. Figure 3 illustrates the general architecture of the system.
m.pbs m.pvsPBS

*.pvs

B.pvs Proof checking

PVS

Fig. 3. The PBS toolPBS works like a compiler. It takes as input a �lem.bps containing an abstractmachine and generates its corresponding embedding as a PVS theory in the �lem.pvs. The �le B.pvs contains our formalization of the B-method. As the diagramsuggests, a PBS machine can import any PVS theory. Therefore, the user is notconstrained to a limited set of data types.Some features of PBS deserve some comments. First of all, the syntax of theAbstract Machine Notation supported in PBS is based on the PVS syntax. Asa result, it does not match the syntax of B de�ned in [Abr96a]. In addition,PBS uses a typing approach of the Abstract Machine Notation. Instead of aspeci�cation language based on the set theory proposed by Abrial in [Abr96a],the PBS notation is based on the higher-order logic and type theory of PVS.11



The PBS system can be used as well at the development level as at the metalevel, as we show through two case studies. In the �rst case study, we relate ourexperience in the development of so-called \atomic memory" protocols, and inthe second case study, we consider some alternative semantics for the paralleloperator.Currently, the PBS environment generates PVS source theories. With respectto Coq, we have only encoded the semantics of all the B constructs.4.1 Development of an atomic memory protocolWe have expressed in PBS the development steps of atomic memory protocols[Ste90] (the PBS sources are given in the appendix). We have found it interestingto express such a development, since atomic memory protocols belong to the classof concurrent parameterized programs, and their validation is an active researchtopic.We have appreciated the use of the B methodology for expressing develop-ments. With respect to our previous experience on the validation of such prob-lems [BF95] in HOL, the relevant aspect is the structuring of development stepsby means of operations, invariants, constraints, and re�nements.With respect to concurrency, we note the lack of an indexed parallel constructexpressing the replication of substitution. However, it is possible to simulate sucha feature with B lambda expressions.The invariant feature of B is su�cient for naturally expressing most safetyproperties. It is interesting to note that B extensions have been proposed forspecifying new features such as liveness and more generally temporal properties[AM98]. We believe that the PBS environment can be used for{ validating the semantics of proposed constructs and the relations betweenthese constructs and the existing ones.{ experimenting with new developments, using the proposed extensions.It is now widely acknowledged that the use of a given assistant theoremprover (e.g. Coq, PVS, HOL, etc) is a matter of taste. The PBS approach canbe considered as a unifying one: we can envision developments where the proofsof an invariant or a re�nement can be done in either Coq or PVS or in any othertool o�ering the basic concepts we rely on (table of Section 3.7).4.2 Alternative semantics for the k operatorThe parallel construct currently proposed for B has the following signature:Syntax Condition TypeF kB G F 2 P(s)! P(s) P(s� t)! (s� t)G 2 P(t)! P(t)12



Since the state spaces of the components are distinct, it does not allow anysharing. Consequently, the mapping onto shared memory concurrent architec-tures is not well supported. We propose an alternative semantics for the k con-struct, allowing some sharing. The proposed semantics is based on the de�nitionof the variables that can be changed by a substitution, which we call its support.For a simple substitution x:= e the support is de�ned as the singleton fxg. Forall the other substitutions we de�ne the support as the union of its components.For example, the support of x:=e k y:=f is de�ned as the set fx; yg.To de�ne the new semantics of the parallel substitution, we introduce a newtransition type which \inherits" the �rst transition type and owns the new �eldsupport for representing the set of variables which can be modi�ed by the tran-sition. Then, the new transition type is de�ned as follows:Transition 1 : TYPE = [#support : set of Id,tr: f Transition | 8 e1 e2:(pre(tr)(e1) ^ rel(tr)(e1,e2) ^ e1(i) 6= e2(i)) ) i 2 support g#]Concerning the support �eld, it is synthesized by the PBS compiler. Forinstance, we haveCHOICE 1(tr1,tr2: Transition 1): Transition 1 =(# support := support(tr1) [ support(tr2),tr := CHOICE(tr(tr1),tr(tr2))#)Then, we de�ne the new PAR operator as follows:PAR(l,r:Transition 1): Transition 1 =(# support := support(l) [ support(r),tr := (# pre := pre(l) ^ pre(r),rel := � e1 e2: (pre(l) ^ pre(r))(e1) ) 9 e2l, e2r:rel(l)(e1,e2l) ^ rel(r)(e1,e2r) ^8 i: IF i 2 support(l) \ support(r) THENe2(i) = e2l(i) _ e2(i) = e2r(i)ELSIF i 2 support(l) THEN e2(i) = e2l(i)ELSIF i 2 support(r) THEN e2(i) = e2r(i)ELSE e2(i) = e1(i) END#)#)Such a de�nition deserves some comments:{ x := y k y := x has the usual meaning: x,y := y,x.{ x := x k x := y is de�ned and has the intuitive meaning of a nondetermin-istic assignment to x.{ Unlike the kB construct, the proposed one does not introduce any new spacetype. Moreover, the proposed de�nition is commutative and associative.13



{ The components of the k are atomic: only their overall e�ect is considered,their execution is not interleaved.{ Provided that the support is preserved through re�nement, the PAR opera-tor is monotonic with respect to re�nement. Consequently, as explained inSection 3.6, it can be used as a basic substitution within the B framework.MONOTONE_PAR: THEOREM8 (U,V,S,T: modele2.Transition):(support(U) = support(V) ^ support(S) = support(T)) )(IS_REFINED_BY(U,V) ^ IS_REFINED_BY(S,T)) )IS_REFINED_BY(PAR(U,S),PAR(V,T))With respect to the interferences allowed by the model, we can comparethe proposed k with the one (hereafter denoted kAO) proposed in [AO91] fordeterministic programs. The latter is de�ned for two statements S1 and S2 whenthe following conditions hold:change(S1) \ var(S2) = ;var(S1) \ change(S2) = ;where{ change(Si) is the set of modi�ed variables by Si.{ var(Si) is the set of variables accessed by Si.The previous restrictions were motivated by the quest for a compositionalityrule; more precisely, kAO admits the following proof rule:fp1gS1fq1g; fp2gS2fq2gfp1 ^ p2gS1 kAO fq1 ^ q2gS2where free(pi; qi) \ change(Sj) = ;; i = 1; 2 j = 1; 2 i 6= jIn the proposed model, we have the following similar proof rule:p1 ) [S1](q1); p2 ) [S2](q2)p1 ^ p2 ) [S1 k S2](q1 ^ q2)5 Related Work and ConclusionSome other formalizations of the B-method are available in the literature. Chartierhas formalized the Abstract Machine Notation of B in Isabelle/HOL [Cha98] byusing a deep embedding. One of the aims of Chartier's work is the formaliza-tion of tools like proof obligation generators or proof checkers. In the context ofPVS, Pratten presents in [Pra95] a tool that generates a PVS representation ofabstract machine proof obligations. The goal of Pratten's work is to assist the14



validation process of B speci�cations by means of the general theorem proverof PVS. A shallow embedding of the Abstract Machine Notation into a set con-straint language has been studied by Tellez-Arenas in [TA98]. The main interestof this approach is to use the logical translation as a prototype of the abstractmachines, for example, allowing a test of whether or not some states of a ma-chine are reachable. In [Mu~n98], Mu~noz proposes a shallow embedding of theAbstract Machine Notation of the B-method in PVS. Rather than translate thenotation in PVS, he adds the notation as a layer over the PVS language. Thisembedding has been implemented in the PBS system.In this paper, we have proposed an embedding of the B-method in Coq andPVS. Our approach is halfway between a deep and a shallow embedding. We canprove meta-theoretical properties about generalized substitutions, but we cannot reason about abstract machines. However, the encoding is highly integratedwith the logic supported by the theorem provers. In fact, at the user level mostof the work about the encoding can be mechanized, as we have shown in thecase of PVS with the PBS tool.Our work can be extended in several ways, for instance{ Validation of extensions to the B-method. With respect to concurrency inB, we have proposed a k construct and used our framework to validate it. Inthe same way, we plan to validate extensions for the expression of livenessand temporal properties [AM98].{ Validation of B tools, for instance, code generators, obligation generators,and proof checkers for B.In the long term, we will pursue this work by the study of the integra-tion of the abstraction technique to the B method. Actually, this technique[BLO98,CGL94,LS97] has been shown to be powerful for the veri�cation of in-�nite and parameterized systems. The presented framework could be reused forstudying the integration of such a technique to the B method. Moreover, thiswould o�er a smooth cooperation between the B development method and modelcheckers.References[Abr91] J.-R. Abrial. The B method for large software: Speci�cation, design andcoding (abstract). In Soren Prehn and Hans Toetenel, editors, Proc. FormalSoftware Development Methods (VDM '91), volume 552 of LNCS, pages398{405, Berlin, Germany, October 1991. Springer.[Abr96a] J.-R. Abrial. The B-Book { Assigning Programs to Meanings. CambridgeUniversity Press, 1996.[Abr96b] J.-R. Abrial. Mathematical Methods in Program Development, chapter Set-theoretic Models of Computations. Advanced Studies Institute. Institut f�urInformatik Technische Universit�at M�unchen, Marktoberdorf, August 1996.[AM98] J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In 2ndConference on the B Method, April 1998.15
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A PBS Development Steps of Atomic Memory ProtocolsA.1 The atomic memory machineAtomic[NbProc:posnat, Word: TYPE]: MACHINEBEGINTYPESProc = `below(NbProc)'VARIABLESm : WordOPERATIONSv: Word <- read(p:Proc) =v := mwrite(p:Proc,v:Word) =m := vskip = SKIPEND AtomicRemark: With respect to the B example given in Section 2, we do not need to givethe initialization typing statement, since PBS is typed.A.2 First re�nementIn this �rst re�nement, we introduce cached copies of the memory and theirassociated states. However, in order to have an abstract description of write-invalidate and write-update protocols, we consider classes of states and expresstheir properties.Atomic_r0[NbProc:posnat, Word: `TYPE+', State:TYPE, invalid:State,shared:State, coh_set:`set[State]', excl_set: `set[State]']:REFINEMENT OF Atomic[NbProc,Word]BEGINCONSTRAINTS` shared /= invalidAND NOT member(invalid,coh_set)AND NOT member(invalid,excl_set)AND NOT member(shared,excl_set)AND FORALL (st:State): (st = invalid) ORmember(st,coh_set) OR member(st,excl_set)'VARIABLESstate0: `ARRAY[Proc -> State]'cache0: `ARRAY[Proc -> Word]'m0 : WordINVARIANT` FORALL (p:Proc,q:Proc): 17



(member(state0(p),excl_set) AND(state0(q) /= invalid) => p = q) AND((state0(p) = shared AND state0(q) = shared) =>cache0(p) = cache0(q)) AND(member(state0(p),coh_set) => cache0(p) = m0)'REFINE_INVARIANT` ((FORALL (p:Proc): cache0(p) /= invalid => cache0(p) = m)AND ((FORALL (p:Proc): cache0(p) = invalid) => m0 = m)'INITIALIZATIONstate0 := `LAMBDA(p:Proc): invalid'OPERATIONSv:Word <- read_hit(p:Proc) =SELECT `state0(p) /= invalid' THENv := `cache0(p)'ENDv:Word <- read_miss_1(p:Proc) =SELECT `(FORALL (p:Proc): state0(p) = invalid)' THENANY coh_state: State WHERE `member(coh_state,coh_set)' THENstate0(p) := coh_state || cache0(p):= m0 || v := `m0'ENDENDv: Word <- read_miss_2(p:Proc) =SELECT `state0(p) = invalid AND(EXISTS (q:Proc): state0(q) = shared)' THENANY q:Proc WHERE `state0(q) = shared' THENv := `cache0(q)'|| cache0 := `cache0 WITH [(p) := cache0(q)]'|| state0 := `LAMBDA (r:Proc):IF r = p THEN sharedELSIF state0(r) /= invalid THEN sharedELSE state0(r) ENDIF'|| m0 := `cache0(q)'ENDENDv : Word <- read_miss_3(p:Proc) =SELECT `state0(p) = invalid AND(EXISTS (q:Proc): member(state0(q),coh_set))' THENANY q:Proc WHERE `state0(q) /= invalid' THENcache0(p) := `cache0(q)' || v := `cache0(q)'|| state0 := `LAMBDA (r:Proc):IF r = p THEN sharedELSIF state0(r) /= invalid THEN shared18



ELSE state0(r) ENDIF'ENDENDv: Word <- read(p:Proc) =CHOICEv <- read_hit(p)ORv <- read_miss_1(p)ORv <- read_miss_2(p)ORv <- read_miss_3(p)ENDwrite_1(p:Proc,v:Word) =SELECT `member(state0(p),excl_set) ANDNOT member(state0(p),coh_set)' THENANY s:State WHERE `member(s,excl_set) ANDNOT member(s,coh_set)' THENcache0,state0 := `cache0 WITH [(p) := v]',`state0 WITH [(p) := s]'ENDENDwrite_2(p:Proc,v:Word) =ANY s:State WHERE `member(s,excl_set) ANDNOT member(s,coh_set)' THENcache0,state0 :=`cache0 WITH [(p) := v]',`LAMBDA (q:Proc): IF (p = q) THEN s ELSE invalid ENDIF'ENDwrite_3(p:Proc,v:Word) =ANY s:State WHERE `member(s,coh_set)' THENcache0,state0,m0 :=`cache0 WITH [(p) := v]',`LAMBDA (q:Proc): IF p = q OR state0(q) /= invalidTHEN s ELSE invalid ENDIF',vENDwrite(p:Proc,v:Word) =CHOICEwrite_1(p,v)ORwrite_2(p,v)ORwrite_3(p,v)END 19



flush_1 =SELECT `EXISTS (p:Proc): member(state0(p),coh_set)' THENANY p: Proc WHERE `member(state0(p),coh_set)' THENstate0(p) := invalidENDENDflush_2 =SELECT `EXISTS (p:Proc): state0(p) /= invalid' THENANY p: Proc WHERE `state0(p) /= invalid' THENstate0,m0 := `LAMBDA (q:Proc):invalid',`cache0(p)'ENDENDskip =CHOICEflush_1ORflush_2ENDEND Atomic_r0
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